所以必须输入足够的语句,一、什么是白盒测试

图片 4

测试文章内容,包含一些测试语句,因为不包含足够的词语,所以必须输入足够的语句,才能正常的入库处理。

白盒测试基本要求

  • 保证一个模块中的所有独立路径至少被执行一次;
  • 对所有的逻辑值均需要测试真、假两个分支;
  • 在上下边界及可操作范围内运行所有循环;
  • 检查内部数据结构以确保其有效性。

白盒测试又称结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。”白盒”法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。”白盒”法是穷举路径测试。白盒测试并不是简单的按照代码设计用例,而是需要根据不同的测试需求,结合不同的测试对象,使用适合的方法进行测试。

一、什么是白盒测试

测试覆盖标准

  1. 语句覆盖:是一个比较弱的测试标准,它的含义是:选择足够的测试用例,使得程序中每个语句至少都能被执行一次
  • 它是最弱的逻辑覆盖,效果有限,必须与其它方法交互使用。
  1. 判定覆盖(也称为分支覆盖):执行足够的测试用例,使得程序中的每一个分支至少都通过一次
  • 判定覆盖只比语句覆盖稍强一些,但实际效果表明,只是判定覆盖,还不能保证一定能查出在判断的条件中存在的错误。因此,还需要更强的逻辑覆盖准则去检验判断内部条件。
  1. 条件覆盖:执行足够的测试用例,使程序中每个判断的每个条件的每个可能取值至少执行一次
  • 条件覆盖深入到判定中的每个条件,但可能不能满足判定覆盖的要求。
  1. 判定/条件覆盖:执行足够的测试用例,使得判定中每个条件取到各种可能的值,并使每个判定取到各种可能的结果
  2. 条件组合覆盖:执行足够的例子,使得每个判定中条件的各种可能组合都至少出现一次
  • 这是一种相当强的覆盖准则,可以有效地检
    查各种可能的条件取值的组合是否正确。
  • 它不但可覆盖所有条件的可能取值的组合,还可覆盖所有判断的可取分支,但可能有的路径会遗漏掉。
  • 测试还不完全。

白盒测试用例设计的一个很重要的评估标准就是对代码的覆盖度白盒测试中常见的覆盖方法有六种:语句覆盖、判定覆盖、条件覆盖、判定/条件覆盖、组合覆盖和路径覆盖。下面我们就分别看看这几种不同的覆盖吧

  • 白盒测试又称结构测试、透明盒测试、逻辑驱动测试或基于代码的测试。白盒测试是一种测试用例设计方法,盒子指的是被测试的软件,白盒指的是盒子是可视的,你清楚盒子内部的东西以及里面是如何运作的。”白盒”法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。”白盒”法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。(摘自百度百科)

主要方法

  1. 逻辑驱动测试
  • 语句覆盖
  • 判定覆盖
  • 条件覆盖
  • 判定/条件覆盖
  • 条件组合覆盖
  1. 路径测试
  • 路径测试就是设计足够多的测试用例,覆盖被测试对象中的所有可能路径。这是最强的覆盖准则。
  • 基本路径测试:设计足够多的测试用例,运行所测程序,要覆盖程序中所有可能的路径。但在路径数目很大时,真正做到完全覆盖是很困难的,必须把覆盖路径数目压缩到一定限度。例如程序中的循环体只执行一次。

一、语句覆盖(Statement Coverage)

  1. 主要特点:语句覆盖是最起码的结构覆盖要求,语句覆盖需要选择足够的测试用例,使我们设计出来的测试用例要保证程序中的每一个语句至少被执行一次
  2. 优点:可以很直观地从源代码得到测试用例,无须细分每条判定表达式。
  3. 缺点:由于这种测试方法仅仅针对程序逻辑中显式存在的语句,但对于隐藏的条件和可能到达的隐
    式逻辑分支,是无法测试的。
  4. 举例

public int foo(int a,int b)
{
      return a/b;
}

这是一个求两数之商的函数。如果我们设计如下的测试用例:
TestCase: a =2, b =1
此时,该函数的代码覆盖率达到了100%,并且设计的case可以顺利通过测试。但是显然该函数有一个很明显的bug:当
b=0 时,会抛出异常。

二、白盒测试VS黑盒测试

语句覆盖

例1:

PROCEDURE  M(VAR A,B,X:REAL);  
BEGIN 
IF ((A>1) AND (B=0))  THEN X:=X/A; 
IF ((A=2) OR (X>1))   THEN X:=X+1; 
END.

图片 1

流程图

为使程序中每个语句至少执行一次,只需设计一个能通过路径ace的例子就可以了,例如选择输入数据为:
A=2,B=0,X=3
从上例可看出,语句覆盖实际上是很弱的,如果第一个条件语句中的AND错误地编写成OR,上面的测试用例是不能发现这个错误的;又如第三个条件语句中X>1误写成X>0,这个测试用例也不能暴露它,此外,沿着路径abd执行时,X的值应该保持不变,如果这一方面有错误,上述测试数据也不能发现它们。

例2:

void  DoWork(int x,int y,int z)
{  int  k=0,j=0;
   if((x>3)&&(z<10))
   {  k=x*y-1;     //语句块1
      j=sqrt(k);
   }
   if((x= =4)||(y>5))
   {  j=x*y+10;   //语句块2
   }
   j=j%3;             //语句块3
}

图片 2

流程图

为了测试语句覆盖率只要设计一个测试用例就可以把三个执行语句块中的语句覆盖了。测试用例输入为:x=4、y=5、z=5,程序执行的路径是:abd
该测试用例虽然覆盖了可执行语句,但并不能检查判断逻辑是否有问题,例如在第一个判断中把&&错误的写成了||,则上面的测试用例仍可以覆盖所有的执行语句。

二、判定覆盖(Decision Coverage)

  1. 主要特点:判定覆盖又称为分支覆盖,它要求选择足够的测试用例,使得运行这些测试用例时,每个判定的所有可能结果至少出现一次
  2. 优点:判定覆盖比语句覆盖要多几乎一倍的测试路径,当然也就具有比语句覆盖更强的测试能力。同样判定覆盖也具有和语句覆盖一样的简单性,无须细分每个判定就可以得到测试用例。
  3. 缺点:往往大部分的判定语句是由多个逻辑条件组合而成(如,判定语句中包含AND、OR、CASE),若仅仅判断其整个最终结果,而忽略每个条件的取值情况,必然会遗漏部分测试路径。
  4. 举例
![](https://upload-images.jianshu.io/upload_images/2298827-34f2268901fe3fb7.png)

X    Y   路径
90  90  OAE
50  50  OBDE
90  70  OBCE
  1. 一般软件开发人员和测试人员对白盒测试和黑盒测试的感念都有一定的认识,但认为是编代码所做的测试是白盒测试,黑盒测试不用编写代码,这其实是一种误解。
  2. 任何工程产品(注意是任何工程产品)都可以使用以下两种方法之一进行测试。
    黑盒测试:已知产品的功能设计规格,可以进行测试证明每个实现了的功能是否符合要求。
    白盒测试:已知产品的内部工作过程,可以通过测试证明每种内部操作是否符合设计规格要求,所有内部成分是否以经过检查。
  3. 软件的黑盒测试意味着测试要在软件的接口处进行。这种方法是把测试对象看做一个黑盒子,
    测试人员完全不考虑程序内部的逻辑结构和内部特性,只依据程序的需求规格说明书,检查程序的
    功能是否符合它的功能说明。因此黑盒测试又叫功能测试或数据驱动测试。
  4. 软件的白盒测试是对软件的过程性细节做细致的检查。这种方法是把测试对象看做一个打开的盒子,
    它允许测试人员利用程序内部的逻辑结构及有关信息,设计或选择测试用例,对程序所有逻辑路径进行测试。
    通过在不同点检查程序状态,确定实际状态是否与预期的状态一致。因此白盒测试又称为结构测试或逻辑驱动测试。

判定覆盖

例1:
如果设计两个例子,使它们能通过路径ace和abd,或者通过路径acd和abe,就可达到“判定覆盖”标准,为此,可以选择输入数据为:
① A=3,B=0,X=1(沿路径acd执行)
② A=2,B=1,X=3(沿路径abe执行)
例2:
如果设计两个测试用例则可以满足条件覆盖的要求。测试用例的输入为:
x=4、y=5、z=5【a b d】
x=2、y=5、z=5【a c e】
上面的两个测试用例虽然能够满足条件覆盖的要求,但是也不能对判断条件进行检查,例如把第二个条件y>5错误的写成y<5,、上面的测试用例同样满足了分支覆盖。
注意:程序中含有判定的语句包括IF-THEN-ELSE、DO-WHILE、REPEAT-UNTIL等,除了双值的判定语句外,还有多值的判定语句,如PASCAL中的CASE语句、FORTRAN中带有三个分支的IF语句等。所以“分支覆盖”更一般的含义是:使得每一个分支获得每一种可能的结果

三、条件覆盖(Condition Coverage)

  1. 主要特点:要求所设计的测试用例能使每个判定中的每一个条件都获得可能的取值,即每个条件至少有一次真值、有一次假值。
  2. 优点:显然条件覆盖比判定覆盖,增加了对符合判定情况的测试,增加了测试路径。条件覆盖使得判定中的每一个条件都取到了不同的结果,这一点判定覆盖则无法保证。
  3. 缺点:要达到条件覆盖,需要足够多的测试用例,但条件覆盖并不能保证判定覆盖。条件覆盖只能保证每个条件至少有一次为真,而不考虑所有的判定结果。
  4. 举例

X    Y   路径
90  70  OBC
40        OBD

三、白盒测试的方法:总体上分为静态方法和动态方法两大类。

条件覆盖

一个判定中往往包含了若干个条件,如例1的程序中,判定 (A>1) AND
(B=0)包含了两个条件: A>1以及
B=0,所以可引进一个更强的覆盖标准——“条件覆盖”。

  • 例1的程序有四个条件:
    A>1、 B=0、A=2、X>1
    为了达到“条件覆盖”标准,需要执行足够的测试用例使得在a点有:
    A>1、A≤1、B=0、B≠0 等各种结果出现,以及在b点有:
    A=2、A≠2、X>1、X≤1 等各种结果出现。
    现在只需设计以下两个测试用例就可满足这一标准:
    ① A=2,B=0,X=4 (沿路径ace执行)
    ② A=1,B=1,X=1 (沿路径abd执行)

  • 对例2中的所有条件取值加以标记。

  • 对于第一个判断:
    条件x>3 取真值为T1,取假值为-T1
    条件z<10 取真值为T2,取假值为-T2

  • 对于第二个判断:
    条件x=4 取真值为T3,取假值为-T3
    条件y>5 取真值为T4,取假值为-T4

  • 则可以设计测试用例如下

![](https://upload-images.jianshu.io/upload_images/938465-207afe4db61770e8.png)

条件覆盖测试用例



注意:
  • “条件覆盖”通常比“分支覆盖”强,因为它使一个判定中的每一个条件都取到了两个不同的结果,而判定覆盖则不保证这一点。

  • “条件覆盖”并不包含“分支覆盖”,如对语句IF(A AND B)THEN S
    设计测试用例使其满足”条件覆盖”,即使A为真并使B为假,以及使A为假而且B为真,但是它们都未能使语句S得以执行。

如对例2设计了下面的测试用例,则虽然满足了条件覆盖,但只覆盖了第一个条件的取假分支和第二个条件的取真分支,不满足分支覆盖的要求。

图片 3

测试用例

参考文献:

谈谈白盒测试中的几种覆盖方法

  • 静态分析是一种不通过执行程序而进行测试的技术。静态分析的关键功能是检查软件的表示和描述是否一致,没有冲突或者没有歧义。

  •  

    动态分析的主要特点是当软件系统在模拟的或真实的环境中执行之前、之中和之后 , 对软件系统行为的分析。动态分析包含了程序在受控的环境下使用特定的期望结果进行正式的运行。它显示了一个系统在检查状态下是正确还是不正确。在动态分析技术中,最重要的技术是路径和分支测试。下面要介绍的六种覆盖测试方法属于动态分析方法。

分支(判定)/条件覆盖

针对上面的问题引出了另一种覆盖标准——“分支(判定)/条件覆盖”,它的含义是:执行足够的测试用例,使得分支中每个条件取到各种可能的值,并使每个分支取到各种可能的结果。

  • 对例1的程序,前面的两个例子
    ① A=2,B=0,X=4 (沿ace路径)
    ② A=1,B=1,X=1 (沿abd路径)
    是满足这一标准的。
  • 对例2,根据定义只需设计以下两个测试用例便可以覆盖8个条件值以及4个判断分支。
![](https://upload-images.jianshu.io/upload_images/938465-2838323b3da2208e.png)

分支(判定)/条件覆盖测试用例



分支/条件覆盖从表面来看,它测试了所有条件的取值,但是实际上某些条件掩盖了另一些条件。
  • 例如对于条件表达式(x>3)&&(z<10)来说,必须两个条件都满足才能确定表达式为真。
  • 如果(x>3)为假则一般的编译器不在判断是否z<10了。对于第二个表达式(x==4)||(y>5)来说,若x==4测试结果为真,就认为表达式的结果为真,这时不再检查(y>5)条件了。
  • 因此,采用分支/条件覆盖,逻辑表达式中的错误不一定能够查出来了。

 四、本文介绍六种白盒子测试方法:

条件组合覆盖

针对上述问题又提出了另一种标准——“条件组合覆盖”。它的含义是:执行足够的例子,使得每个判定中条件的各种可能组合都至少出现一次。满足“条件组合覆盖”的测试用例是一定满足“分支覆盖”、“条件覆盖”和“分支/条件覆盖”的。

  • 再看例1的程序,我们需要选择适当的例子,使得下面8种条件组合都能够出现:

1) A>1, B=0    2) A>1, B≠0
3) A≤1, B=0    4) A≤1, B≠0
5) A=2, X>1    6) A=2, X≤1 
7) A≠2, X>1    8) A≠2, X≤1 

5)、 6)、 7)、8)四种情况是第二个
IF语句的条件组合,而X的值在该语句之前是要经过计算的,所以还必须根据程序的逻辑推算出在程序的入口点X的输入值应是什么。
下面设计的四个例子可以使上述 8种条件组合至少出现一次:

① A=2,B=0,X=4  
    使 1)、5)两种情况出现; 
② A=2,B=1,X=1
    使 2)、6)两种情况出现;
③ A=1,B=0,X=2
    使 3)、7)两种情况出现;
④ A=1,B=1,X=1
    使 4)、8)两种情况出现。

上面四个例子虽然满足条件组合覆盖,但并不能覆盖程序中的每一条路径,例如路径acd就没有执行,因此,条件组合覆盖标准仍然是不彻底。

  • 现对例2中的各个判断的条件取值组合加以标记如下:

1、x>3,z<10    记做T1 T2,第一个判断的取真分支
2、x>3,z>=10   记做T1 -T2,第一个判断的取假分支
3、x<=3,z<10   记做-T1 T2,第一个判断的取假分支
4、x<=3,z>=10  记做-T1 -T2,第一个判断的取假分支
5、x=4,y>5     记做T3 T4,第二个判断的取真分支
6、x=4,y<=5    记做T3 -T4,第二个判断的取真分支
7、x!=4,y>5    记做-T3 T4,第二个判断的取真分支
8、x!=4,y<=5   记做-T3 -T4,第二个判断的取假分支

根据定义取4个测试用例,就可以覆盖上面8种条件取值的组合。
测试用例如下表:

图片 4

条件组合覆盖测试用例

上面的测试用例覆盖了所有条件的可能取值的组合,覆盖了所有判断的可取分支,但是却丢失了一条路径abe。

  • (强度由低到高)语句覆盖、判定覆盖、条件覆盖、判定条件覆盖、条件组合覆盖、路径覆盖。